《三角形内角和》说课稿

时间:2024-11-01 22:28:19
《三角形内角和》说课稿

《三角形内角和》说课稿

作为一名人民教师,时常会需要准备好说课稿,借助说课稿可以有效提升自己的教学能力。我们该怎么去写说课稿呢?以下是小编整理的《三角形内角和》说课稿,欢迎阅读,希望大家能够喜欢。

《三角形内角和》说课稿1

各位评委、各位同行朋友:

大家上午好!

“三角形的内角和”是九年义务教育六年制新课程标准教科书第八册第二单元——认识图形中第三节的内容。

一、说教材和新课标

(包括教材、新课标和教学目标)

1、在学习本节内容——探索与发现三角形的内角和之前,学生已经掌握了有关角的分类和三角形的分类知识,知道平角的度数是180°,并且能够通过量角器测量角的大小。教材编排了通过小组合作学习形式,即每人随意画一个三角形,通过小组成员的分工与合作,求出每个同学画的三角形的内角和的度数。然后与学生共同分析各活动小组的“三角形内角和”的记录情况,进而归纳出三角形的内角和等于

180°。为证明这个结论的正确性和加深学生的认识,教材还编排了“拼一拼”(即把三角形的三个角撕下来拼在一起)和“折一折”(即先把一个长方形折成一个三角形,再把这个三角形的三个角折成一个平角)这两个实践与操作环节。本节教材的最后编排了已在三角形中两个角的度数求第三个角的度数的内容。

2、新课程改革的重要目标就是要改变学生学习数学的方式,其中一个非常重大的变化就是由过去注重教师“怎么教”到现在更重视学生“怎么学”,因此我认为:学生“怎么学”比“学什么”更重要。一个学生如果掌握了“怎么学”,就如同拥有了点石成金的仙人指,这才是他一身中最可宝贵的、无穷无尽的财富。基于此,我们的教学目的就不言可愈了。

基于新课标的要求,本课的教学目标是:

1、通过小组分工合作学习与亲身体念,学习和探索三角形的内角和等于180°;

2、利用三角形的内角和等于180°这个已知条件进行有关角的计算;

3、培养学生自主学习。

二、说教法和学法

在本课题的教法和学法主要体现在以下两方面:

1、突出学生作为学习主体的作用

学生是学习的主体,教学中放手让学生去尝试、去思考,让他们亲身感受知识的来龙去脉、获取知识的认知规律。作为教师,应以学生的发展为立足点,以自主探索为主线,以求异创新为宗旨,采取多媒体辅助教学,尽可能地为学生创设参与的情境,充分调动学生学习的积极性,强化学生的主体地位,不断培养学生自学能力。根据本节课教材内容和编排特点,按照学生认知规律,遵循教师为主导,学生为主体的指导思想,我主要采取操作尝试、观察对比、发现归纳等方法进行教学。

2、让学生在创造中学习,在学习中创造

学会在具体情境中发现问题、提出问题并初步解决问题,体念探索的成功、学习的快乐。通过动手操作、独立思考和小组合作交流活动,完善自己的想法,提高自己的技能;通过动手操作、观察辨析、自主探究,让学生全面、全程地参与到每个教学环节。鼓励学生大胆想象,通过自己的思考和探究,努力尝试去发现和创造,培养他们的创造精神。这也正是“新课标”赋予我们每一个教学工作者的神圣使命!

三、说教学过程

为了激发学生的学习兴趣,我事先邀请两个学生表演两个大小相去甚远的三角形的争辩:都说自己的内角和较大,用夸张搞怪的动作争得唾沫星四溅,以期引起学生的注意力,进而提出问题:到底谁说的正确呢?以“请你做裁判”为名引入课题。

接着进行小组分工合作学习活动,在小组内,每个同学画一个任意三角形,然后分工量角度、登记与求和,并对这些三角形的内角和的度数进行分析、归纳,得出三角形的内角和大约是180°左右的初步结论。接着由教师引导学生综合分析归纳各活动小组的计算结果,得出任何三角形的内角和都等于180°的结论。

为证明这个论断的正确性和加深学生的认识,教师接着组织学生进行“拼一拼”(即把三角形的三个角撕下来拼在一起拼成一个平角)和“折一折”(即先把一个长方形折成一个三角形,再把这个三角形的三个角折成一个平角)这两个实践与操作活动,使学生更进一步确信:三角形的内角和等于180°。同时向学生灌输数学王国里有许许多多的规律和奥秘,有待同学们去努力探索,以激发学生的学习兴趣。

接下来是知识的应用:已知三角形中两个角的度数求第三个角的度数以及其他的相关知识和练习。

四、教学演示

1、两个学生表演争论自己的三角形内角和大些,以让大家做裁判为名引入课题;

2、指导小组合作学习活动,然后综合归纳:三角形的内角和等于180°;

3、引导学生实践操作:拼一拼、折一折(以证明三角形的内角和确实等于180°);

4、练习:判断题

①钝角三角形的内角和大于直角三角形的内角和。

②把一个三角形剪成两个三角形后,每个三角形的度数不再等于180°了。

③直角三角形中的两个锐角和等于90°

5、学习求三角形中角的度数的方法……

《三角形内角和》说课稿2

一,说教材

(一)教材的地位和作用

《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》,《三角形的分类》之后进行的,在此之后则是《图形的拼组》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习,掌握三角形的内角和是180°这一规律具有重要意义.

(二)教学目标

基于以上对教材的分析以及对教学现状的思考,我从知识与技能,教学过程与方法,情感态度价值观三方面拟定了本节课的教学目标:

1.通过"量一量","算一算","拼一拼","折一折"的小组活动的方法,探索发现验证三角形内角和等于180°,并能应用这一知识解决一些简单问题.

2.通过把三角形的内角和转化为平角进行探究实验,渗透"转化"的数学思想.

3.通过数学活动使学生获得成功的体验,增强自信心.培养学生的创新意识,探索精神和实践能力.

(三)教学重,难点

因为学生已经掌握了三角形的概念,分类,熟悉了钝角,锐角,平角这些角的知识.对于三角形的内角和是多少度,学生并不陌生,也有提前预习的习惯,学生几乎都能回答出三角形的内角和是180°.在整个过程中学生要了解的是"内角"的概念,如何验证得出三角形的内角和是180°.因此本节课我提出的教学的重点是:验证三角形的内角和是180°.

二,说教法,学法

本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量,折一折,撕 ……此处隐藏30917个字……p>如图,已知△PAD中,∠APD=120°,B、C为AD上的点,△PBC为等边三角形。试尽可能多地找出各几何量之间的相互关系。

本题旨在激发学生独立思考和创新意识,培养创新精神和实践能力,发展个性思维。

(三)、归纳总结,同化顺应

1.学生谈体会

2.教师总结,出示本节知识要点

3.教师点评,对学生在课堂上的积极合作,大胆思考给与肯定,提出希望。

(四)、作业:

1、必做题:习题3.1第10、11、12题

2、选做题:习题3.1第13、14题

(五)、板书设计

三角形内角和

学生拼图展示

已知:

求证:

证明:

开放题:

《三角形内角和》说课稿15

一、教学目标

课程标准这样描述:通过观察、操作了解三角形内角和是180。

分析教材内容,在上学期的学习中学生已经掌握了角的分类及度量的知识。在本课之前,学生又研究了三角形的特性、三边间的关系及三角形的分类等知识。积累了一些有关三角形的知识和经验,形成了一定的空间观念,可以在比较抽象的水平上进一步认识三角形,探索新知。教材中安排了学生对不同形状的、大小的三角形进行度量,再运用拼、折、剪等方法发现三角形的内角和是180°,学好它有助于学生理解三角形的三个内角之间的关系,也是进一步学习其他图形内角和的基础,同时为初中进一步论证做好准备。

课前我对学情进行了分析:

1、学生在学习本课前已经掌握了锐角、直角、钝角、平角和周角的度数,认识了三角形的基本特征及其分类,由于学生的数学知识、能力和思考问题的角度有一定的差异,因此比较容易出现解决问题策略的多样化。

2、已经有不少学生知道了三角形内角和是180度的结论,但是很可能都知其然不知其所以然。

通过对课程标准的认识,以及内容分析和学情分析,我制定了这样的学习目标:

1、通过量、拼、折、剪等方法探索和发现三角形的内角和等于180°并会应用这一规律解决实际的问题。

2、通过研究直角三角形进而研究锐角三角形、钝角三角形,初步认识、理解由特殊到一般的逻辑思辨方法。

二、评价设计

针对这一目标的完成,我设计了一下评价方式:

1、交流式评价:通过师生、生生对话交流,在交流中对学生进行评价。

2、表现性评价:通过小组讨论表现、学生回答问题情况,适当对学生进行点拨。

3、操作反应评价:通过学生在研究三角形内角和过程中的测量、简拼、折等活动对学生进行评价

评价题目

1、通过3个练习题(1、做一做。2、说一说3、拼一拼、想一想)

检测学习目标1的掌握情况。

2、通过小组、同桌合作、汇报,教师引导学生理解本节课所蕴含的学习方法,检测学习目标2的掌握情况

三、教具学具准备

教具准备:课件、3个直角三角形,2个锐角三角形、2个钝角三角形、一张表格

学具准备:三角板、量角器.

四、教学过程

这节课的教学我通过一下四个环节完成。

1、观察猜测,引入新知;

2、动手操作,探索新知;

3、巩固新知,拓展应用;

4、总结评价、延伸知识。

第一环节,观察猜测,引入新知。

由图形引入,让学生指出锐角三角形,直角三角形,钝角三角形的三个内角,发现在这些三角形中最大的内角是钝角。问:想看钝角三角形72变吗?我们一起来看一看。课件演示:

(1)钝角变小,另外两个角怎样变?

(2)钝角变大,另外两个角怎样变?

(3)钝角变大、变大、变大再变大,还能再大吗?发现再大就成平角了。平角多少度?这时把三角形三个内角的加起来,和可能多少呢?猜测:180度。

这只是我们的猜测,(板书:猜测)数学是要用事实说话的,这节课我们就来学习三角形的内角和。(板书课题)这样由三种变化的三角形引入新课,激发学生兴趣的同时为后面的学习做准备

第二环节,动手操作,探索新知。

1、直角三角形的内角和。

(一)直角三角形内角和

先让学生观察一副三角板的内角和,发现都是180度,和猜测是一样的,是不是所有的直角三角形内角和都是180度呢?课件出示一些直角三角形,让学生用手中的工具验证你的猜测。

四人小组合作,拿出学具袋里三个红色的直角三角形和表格,用不同的方法验证猜测。学生可以“量一量”,也可以“剪一剪”,还可以“折一折”。汇报时要让学生说一说方法,同时在课件上展示。

这个环节引导学生通过量、拼、推理等实践操作活动,自主探究直角三角形的内角和是180度,体验解决问题策略的多样化。通过这些过程使学生明白:探究问题有不同的方法、途径,并且方法之间可以互为验证,达到结论的统一,从而使学生明白获得探究问题的方法比获得结论更为重要。

(二)、锐角三角形、钝角三角形的内角和

课件出示将锐角三角形、钝角三角形,问:你能利用我们刚才学到的知识来研究它们的内角和吗?动手试一试,可以同桌讨论。(学生操作,汇报,课件演示)让学生模仿老师操作说理。由此得到了锐角三角形和钝角三角形的内角和也是180度。我们就可以说所有三角形的内角和都是180度。这是三角形的一个特性。

这样引导学生通过直角三角形的内角和是180度来推导出锐角和钝角三角形的内角和是180度,使学生初步掌握由特殊到一般的逻辑思辨方法。

第三环节、巩固新知,拓展应用

用三角形的这一特性来解决一些问题

1、基本练习

通过做一做和说一说这两个练习来强化学生认知。

2、拓展练习

拼一拼、想一想

(1)两个三角形拼成大三角形,说出大三角形的内角和

(2)一个三角形去掉一部分

引导学生发现,无论三角形的形状或大小如何改变,内角和都是180度,看来三角形的内角和度数和他的大小形状都无关。

(3)再把这个三角形剪去一部分剪成一个四边形,它的内角和是多少度?

(4)如果变成五边形,你还能求出他的度数吗?

充分利用多媒体资源帮助学生理解、消化、新的知识,能够灵活的运用三角形的内角和等于180度。在此基础上渗透数学的“转化”思想和“分割”思想提高学生灵活运用和推理等各方面的能力。

第四环节、总结评价、延伸知识

通过这个环节让学生谈一谈自己的收获或感受,对本节课的知识进行拓展升华。

五、板书设计:

三角形的内角和

猜测(180度)

验证:测量、撕拼、折叠结论

三角形的内角和是180度

我的板书简明扼要,体现了本节课的重点,而且是对本节课学习方法的一个回顾。

《《三角形内角和》说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式